Search results

Search for "self-cleaning surfaces" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • . These are well-suited for the cleanup of small oil spills. Keywords: hot embossing; lotus effect; nanofur; nanopads; oil spill cleanup; oil water separation; roll-to-roll; R2R; superhydrophobicity; Introduction Self-cleaning surfaces utilizing the famous lotus effect have gained significant importance
  • , too [7]. Multiple techniques exist to prepare self-cleaning surfaces. Direct laser writing and electron beam lithography have been employed successfully to create superhydrophobic surfaces. However, due to low writing speeds these approaches are not viable for surface areas larger than a few square
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • surface technologies such as antifog or antifouling, oil-repellant coatings, self-cleaning surfaces and water-harvesting systems are inspired by nature’s designs [17][18][19][20][21][22][23][24][25][26]. The synthesis of artificial superhydrophilic surfaces can be achieved by a variety of routes, for
  • demonstrate that on-surface alteration of the MOF film morphology by versatile solution-based bottom-up methods such as VAC is a powerful tool for realizing the potential of MOFs in surface-based technologies such as oil–water separation systems, antioil coatings, or self-cleaning surfaces. Furthermore, the
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • suitable for use in environmental related fields such as air and water treatment and self-cleaning surfaces. In this work, titania thin films and powders were prepared by a particulate sol–gel route, using titanium tetrachloride (TiCl4) as a precursor. Afterwards, the prepared sols were doped with nitrogen
PDF
Album
Full Research Paper
Published 04 Jun 2018

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • biology (UV signatures). Some of these topics have become objects of interest in biomimetic research and are partially covered in articles in this Thematic Series [10][11]. For his studies on self-cleaning surfaces, and especially for the successful transfer of this technology to bioinspired self-cleaning
PDF
Editorial
Published 08 Feb 2017

Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

  • Christoph Neinhuis

Beilstein J. Nanotechnol. 2017, 8, 394–402, doi:10.3762/bjnano.8.41

Graphical Abstract
  • in materials science. Keywords: Wilhelm Barthlott; 70th birthday; self-cleaning surfaces; lotus-effect; Separation Most obviously, borders are meant to separate two or more entities from another (Figure 1). It might be our atmosphere separating us from space, an ocean separating two continents, a
  • . Finally, with the help of the former editor Andreas Sievers, the paper appeared in “Planta” five years after the first submission [40] followed by a survey about the characterisation and distribution of self-cleaning surfaces among plants [41]. Regardless of the scepticism from the scientific community
  • , self-cleaning surfaces nowadays are well known. The transfer and technical application have received several awards and the trademark “Lotus-Effect” has become a kind of synonym for functional water-repellent or even only hydrophobic surfaces. Follow-up investigations have been published in all major
PDF
Album
Commentary
Published 08 Feb 2017

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • widely used for both water splitting and mineralization of organic contaminants in solution [2]. The applications range from third generation solar cells [3] to material for air or water purification [4] to antifogging and self-cleaning surfaces [5][6]. The main advantage of this material is its high
PDF
Album
Full Research Paper
Published 19 Jan 2017

The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

  • Florian Antony,
  • Rainer Grießhammer,
  • Thomas Speck and
  • Olga Speck

Beilstein J. Nanotechnol. 2016, 7, 2100–2115, doi:10.3762/bjnano.7.200

Graphical Abstract
  • potential environmental benefits and burdens associated with “self-cleaningsurfaces, finally concluding that conventional approaches can be superior with respect to environmental impacts, when compared to self-cleaning surfaces [24]. However, it must be considered, that they compare the life-cycle of a
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2016

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

  • Zitao Zhou,
  • Jino Son,
  • Bryan Harper,
  • Zheng Zhou and
  • Stacey Harper

Beilstein J. Nanotechnol. 2015, 6, 1568–1579, doi:10.3762/bjnano.6.160

Graphical Abstract
  • nanoparticles (ZnO NPs) are the third highest production volume nanoparticles at roughly 550 tons per year [1]. Given their value as UV-protects [2], self-cleaning surfaces [3], sensors [4] and catalysts [5], it is expected that the use of engineered ZnO NPs will continue to increase with the increasing market
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2015

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • (“Lotus effect”) [4][5][6] or cause air retention under water (“Salvinia effect”) [7][8]. Superhydrophobic, self-cleaning surfaces possess a static contact angle (CA) equal to or above 150°, and a low hysteresis angle, where water droplets roll-off at surface inclinations equal to or below 10° [6][9]. One
  • of the most important biological water repellent and self-cleaning surfaces is the lotus (Nelumbo nucifera) leaf [4][5]. Its water repellence is based on two factors: Surface roughness and a hydrophobic surface chemistry. The micro-morphological characteristics of lotus leaves are papillose cells
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

  • Hans J. Ensikat,
  • Petra Ditsche-Kuru,
  • Christoph Neinhuis and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 152–161, doi:10.3762/bjnano.2.19

Graphical Abstract
  • become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the ‘Lotus effect’. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the
PDF
Album
Video
Full Research Paper
Published 10 Mar 2011

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

  • Petra Ditsche-Kuru,
  • Erik S. Schneider,
  • Jan-Erik Melskotte,
  • Martin Brede,
  • Alfred Leder and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 137–144, doi:10.3762/bjnano.2.17

Graphical Abstract
  • world [5][6]. The effective self-cleaning mechanism of the Lotus flower Nelumbo nucifera is especially well known [3]. Granting of a patent in 1998 [7], followed by the introduction of the trade mark Lotus-Effect® was the start of the realisation of biomimetic self-cleaning surfaces. Another highly
PDF
Album
Full Research Paper
Published 10 Mar 2011

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • well as the shark skin replica as an example from an aquatic animal. Article objective This article reviews drag data on artificial surfaces inspired from shark skin and lotus leaf. Oleophobic and self-cleaning surfaces inspired from aquatic animals are then discussed. Fabrication and Characterization
PDF
Album
Review
Published 01 Feb 2011
Other Beilstein-Institut Open Science Activities